FERMILAB-Pub-81/32-EXP 7550.610 (Submitted to Phys. Rev.)

ANOTHER SOURCE OF J/ ψ PARTICLES IN HADRONIC COLLISIONS

Rajendran Raja

April 1981

Another Source of J/ψ particles in Hadronic Collisions

Rajendran Raja April 1981

Abstract

We point out the existence of a hadronic decay mode of the $\chi(3550)$ to J/ψ which has hitherto not been considered in theoretical models seeking to explain the mechanism of hadronic J/ψ production.

I. Introduction

At present, there exist two distinct models that purport to explain hadronic J/\psi production within the frame work of the quark-parton picture. The first (the non-singlet model)1 envisages the formation of a cc pair by the fusion of two colored gluons (Fig. 1(a)). The cc pair is not in a color singlet state and emits a soft gluon after its formation thereby ending up in a color singlet J/ψ bound state. second, (the singlet model Fig. 1(b))2 first forms an intermediate color singlet state by the fusion of two gluons. The χ then decays electromagnetically into the J/ ψ . singlet model can predict the energy behaviour of the J/ψ cross section as well as its x dependence by suitable choice of the gluon structure functions. The singlet model, on the other hand, insists on a P wave intermediate state being formed first and the J/ψ being formed subsequently by the emission of a photon. Current measurements of the fraction of J/w particles produced from xs by photon emission average around 30% in 185 GeV/c π p interactions. The tendency is then to say that the remaining J / s are produced via the nonsinglet mechanism. The purpose of this note is to demonstrate that this is not necessarily so, by pointing out the existence of a hadronic decay mode of the x(3550) which has hitherto been ignored in all theoretical calculations.

II. The new decay mode

When one asks the question, are there any hadronic decays of the χ that give rise to J/ψ production, the following line of argument results.

- a) The decay mode $\chi \rightarrow J/\psi + \pi^O$ is forbidden by C parity.
- b) Similarly $\chi \to J/\psi + n(\pi^0)$ is forbidden by C parity. for any n.
- c) $\chi \rightarrow J/\psi + \pi^{+}\pi^{-}$ is forbidden by G parity.
- d) $\chi \to J/\psi + \pi^{+}\pi^{-}\pi^{0} \text{ is allowed by all the}$ discrete symmetries of the strong interaction.
- e) $\chi \rightarrow J/\psi + k \text{ pions where } k>3 \text{ is forbidden}$ by phase space.

Hence only d) is allowed. When one adds up the masses of the final state particles, one gets 3.511 GeV with an error of 2 MeV resulting from the uncertainty in the mass of the J/ψ . This implies that the decay mode d) is forbidden for the 0^{++} χ (3415) and most likely forbidden for the 1^{++} (3508± 4 MeV). However the 2^{++} (3554±5 MeV) has ample phase space (43±5 MeV) to decay down to the J/ψ by this mode as well as electromagnetically.

III. Dates and Branching Ratios

The measured branching ratios of the 2^{++} add up* to $22\pm3\%$. Let us take the extreme case that the remaining 78% of the 2^{++} branching fraction is due to the decay mode d). Then given the fact that $12\pm3.7\%$ of J/ψ is due⁵ the electromagnetic decay of the 2^{++} in 185~GeV/e π^-p interactions, the hadronic decay mode d) can account for $61\pm19\%$ of the J/ψ production. This together with the observed ratio of $19\pm4\%$ from⁵ the 1^{++} will explain 90% of the J/ψ production as being due to χ decay. This is the maximal case and one would not expect the branching ratio of the 2^{++} into the decay mode d) to be as high as 80%. Let us also note that in the charmonium system, hadronic decay modes, despite having little phase space, still compete effectively with electromagnetic modes.

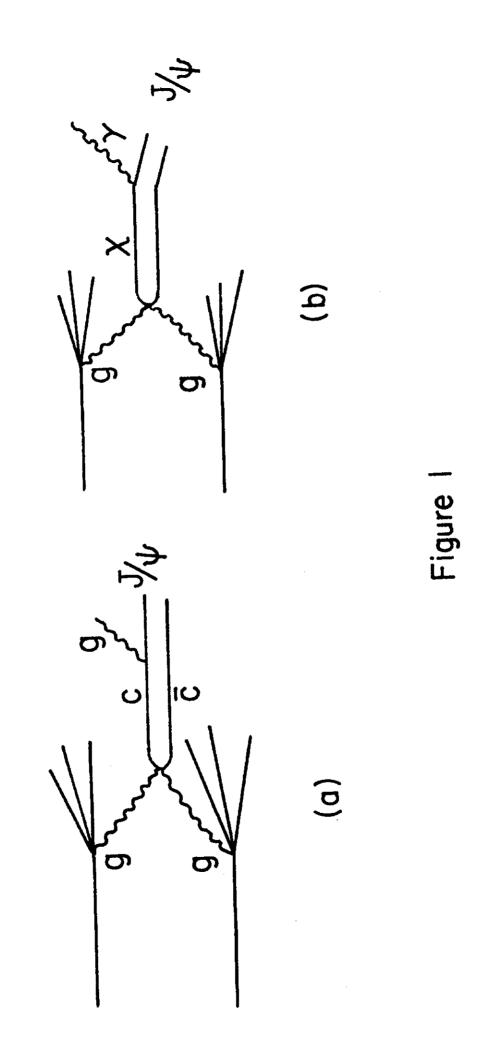
An example is the case

$$ψ'(3685) \rightarrow J/ψ + η (Δm=39.8 MeV)$$

which competes quite effectively (Branching ratio 4.2%) with the electromagnetic decay $\psi' \rightarrow \chi \gamma$ (7%). Thus the decay mode $\chi(2^{++}) \rightarrow J/\psi + \pi^+\pi^-\pi^0$ could happen a significant fraction of the time. Clearly an experimental measurement of this branching ratio would be most welcome.

Finally let us note that the new decay mode provides a clear and effective method of separating the 1⁺⁺ and 2⁺⁺ χs in hadronic collisions, in experiments which do not have the resolution to do it otherwise. When one computes the effective mass of the γ ray from the π^O and the J/ψ , this results in a low mass peak at 3.17 GeV with a full width at half maximum of 50 MeV.

In order to observe such a peak in hadronic collisions, measurement of photons down to a lab energy of 1 GeV/c is necessary, given primary beam energies of 150-200 GeV/c. Observation of such a peak would be confirmation of the decay mode under discussion and its magnitude will give the amount of 2^{++} production, once the branching ratio is known.


References

- M. Gluck, J.F. Owens and E. Reya, Phys. Rev. <u>D17</u>, 2324(1978),
 - H. Fritzsch, Phys. Lett. 67B, 217 (1977)
 - M. Gluck and E. Reya, Phys. Lett. <u>79B</u>, 453 (1978)
 - Y. Afek, L. Leroy and B. Margolis, Phys. Rev. <u>D22</u>, 86 (1977)
- 2. C.E. Carlson and R. Suaya, Phys. Rev. <u>D15</u>, 1416 (1977).
- 3. The contribution of χ decay to J/ ψ production in π^*Be Collisions at 175 GeV/c. WAll, Saclay, Imperial College, Southampton Indiana Collaboration. (Paper submitted to the XX International Conference, Madison, Wisconsin (1980).
- 4. Particle Data Group, Reviews of Modern Physics Vol 52 1980.
- 5. χ Spectroscopy in π Be Collisions at 185 GeV/c.
 - Y. Lemoigne et al, paper submitted to the XX International Conference, Madison, Wisconsin 1980.

Figure Captions

- Fig. 1 a) The non-singlet model. Gluons from the beam and target fuse to form a colored $C\bar{C}$ state which ends up in the J/ ψ state by the emission of a soft gluon.
 - b) The singlet model. Gluons from the beam and target fuse to form an intermediate uncolored P wave state which decays electromagnetically to form the J/ψ .

There are also contributions in either model by light quark fusion, which is not indicated here explicitly.

